МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

СТАРООСКОЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ИМ. А.А. УГАРОВА (филиал) федерального государственного автономного образовательного учреждения

высшего образования

«Национальный исследовательский технологический университет «МИСиС»

ФАКУЛЬТЕТ АВТОМАТИЗАЦИИ И ИНФОРМАЦИОННЫХ НАПРАВЛЕНИЙ КАФЕДРА АВТОМАТИЗИРОВАННЫХ И ИНФОРМАЦИОННЫХ СИСТЕМ УПРАВЛЕНИЯ

Отчет по лабораторным работам №5,6

по дисциплине: «Электротехника»

Выполнил студент группы: АТ-20-2зу Сидоров Иван Иванович

Проверил: к.п.н., доцент кафедры АИСУ Моторина Наталья Петровна подпис Ф.И.О. полностью подпис

Лабораторная работа №5

Тема: Исследование трехфазной цепи при соединении приемников звездой.

1. Цель работы:

- 1.1. Установить соотношения между линейными и фазными токами и напряжениями при различной нагрузке фаз при соединении приемников в «звезду».
 - 1.2.Выявить роль нейтрального (нулевого) провода.
- 1.3.Исследовать соотношения между линейными токами при симметричной и несимметричной нагрузке трехфазной сети при соединении приемников в «треугольник».
 - 2. Порядок выполнения работы:
- 2.1.Собираем схему для исследования трехфазной цепи с включением симметричной активной нагрузки в схему «звезда», с подключенным нулевым проводом, представленную на рис.1. Для удобства примем: верхняя фаза фаза А, средняя фаза В и нижняя фаза С.
 - Рис.1.Схема трехфазной цепи с включением симметричной активной нагрузки в схему «звезда», с подключенным нулевым проводом
- 2.2. Устанавливаем значения сопротивлений резисторов R равным 1 кОм и напряжение источника питания U равным 220 B, со сдвигом угла фаз в 120°. Включаем установку и снимаем показания измерительных приборов (рис.2). Данные измерений заносим в таблицу 1.

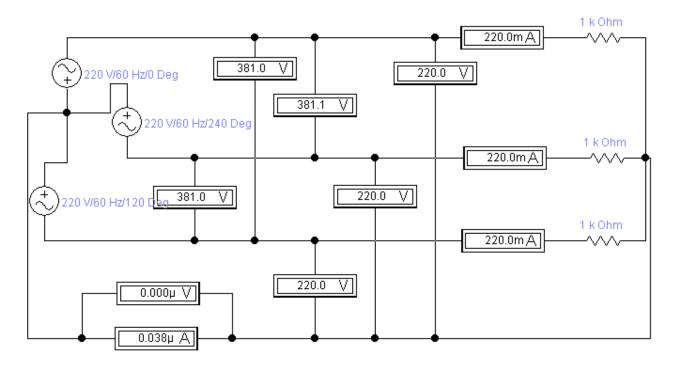


Рис.2. Схема для снятия показаний приборов трехфазной цепи с симметричной нагрузкой в схеме «звезда», с подключенным нулевым проводом.

2.3.В этой же схеме отключаем нулевой провод от источника питания. Включаем установку и снимаем показания измерительных приборов (рис.3). Данные измерений заносим в таблицу 1.

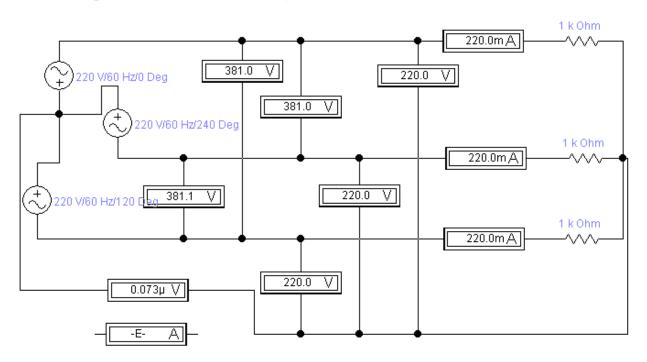


Рис.3. Схема для снятия показаний приборов трехфазной цепи с симметричной нагрузкой в схеме «звезда», с отключенным нулевым проводом.

2.4.Подключаем нулевой провод к источнику питания. Устанавливаем значения сопротивлений резисторов R равными 1 кОм, 1,5 кОм и 0,5 кОмВключаем установку и снимаем показания измерительных приборов (рис.4). Данные измерений заносим в таблицу 1.

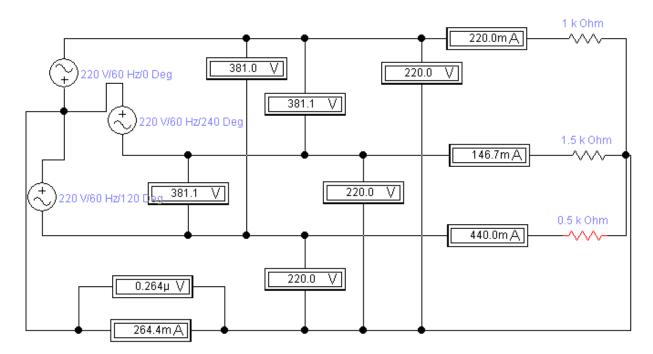


Рис.4. Схема для снятия показаний приборов трехфазной цепи с несимметричной нагрузкой в схеме «звезда», с подключенным нулевым проводом.

2.5. В этой же схеме отключаем нулевой провод от источника питания. Включаем установку и снимаем показания измерительных приборов (рис.5). Данные измерений заносим в таблицу 1.

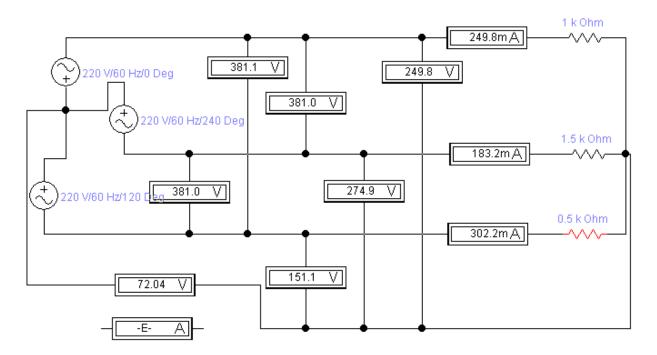


Рис.5. Схема для снятия показаний приборов трехфазной цепи с несимметричной нагрузкой в схеме «звезда», с отключенным нулевым проводом.

2.6.Производим расчет фазных мощностей нагрузки по формуле (1) и расчет эффективной мощности сети по формуле (2), вносим расчетные данные таблицу 1.

$$P_{\phi} = U_{\phi} * I_{\phi} \tag{1}$$

$$P_{\phi} = P_A + P_B + P_C \tag{2}$$

Таблица 1.

Нагрузка	Состояние схемы		Результаты измерений									Результаты вычислений					
	Нулевой провод	Примечание	I. MAA	I _B , MA	Ic, MA	I ₀ , MA	U_A , B	$\mathrm{U_{B},B}$	U_{c} , B	U_{AB} , B	U_{BC} , B	U_{cA} , B	$\mathrm{U}_{0},\mathbf{B}$	$ m P_A, BT$	$P_{\rm B}, B_{ m T}$	$P_{\rm c}, B_{ m T}$	$\mathrm{P}_{^{\mathrm{3}}\!\mathrm{d}},\mathrm{BT}$
Симметричная	включен		טכנ	220	220	0	220	220	220	381	381	381	0	48,2	48,2	48,2	145,2
	отключе н		טכנ	220	220	ı	220	220	220	381	381	381	0	48,2	48,2	48,2	145,2
Несимметричная	включен		UCC	147	440	264	220	220	220	381	381	381	0	48,2	32,3	8,96	177,2
	отключен)5N	183	302	ı	250	275	151	381	381	381	72	62,5	50,3	45,6	158,4

2.7.Построимсовмещенную векторную диаграмму токов и напряжений трехфазной цепи с симметричной нагрузкой в схеме «звезда», с подключенным и отключенным нулевым проводом(рис.6).

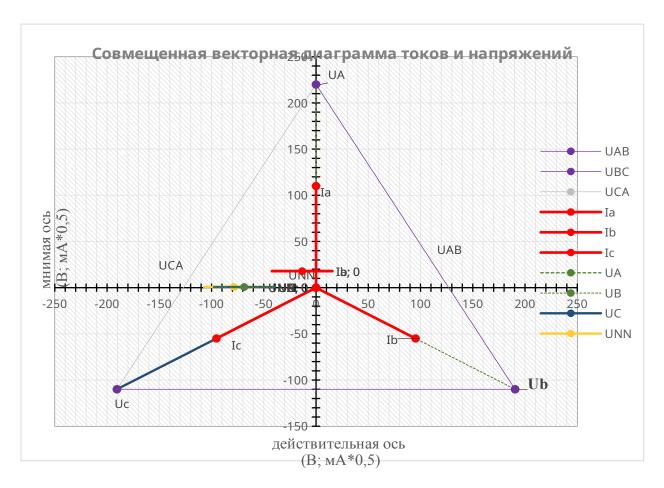


Рис. 6. Совмещенная векторная диаграмма токов и напряжений трехфазной цепи с симметричной нагрузкой в схеме «звезда», с подключенным и отключенным нулевым проводом.

2.8.Построим совмещенную векторную диаграмму токов и напряжений трехфазной цепи с несимметричной нагрузкой в схеме «звезда», с подключенным нулевым проводом(рис.7).

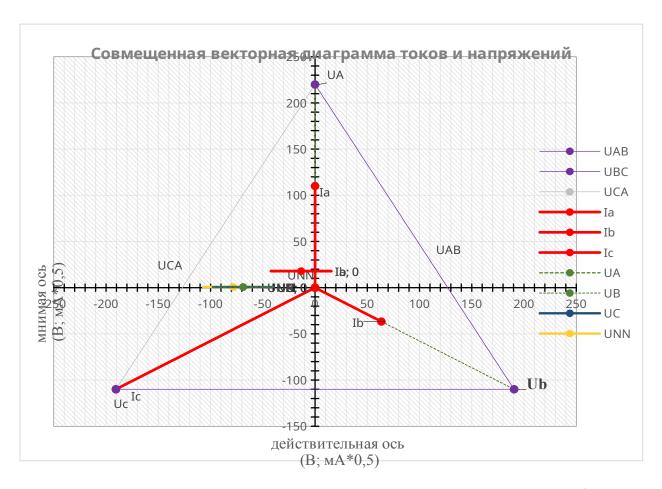


Рис.7. Совмещенная векторная диаграмма токов и напряжений трехфазной цепи с несимметричной нагрузкой в схеме «звезда», с подключенным нулевым проводом.

2.9.Построим совмещенную векторную диаграмму токов и напряжений трехфазной цепи с несимметричной нагрузкой в схеме «звезда», с отключенным нулевым проводом(рис.8).

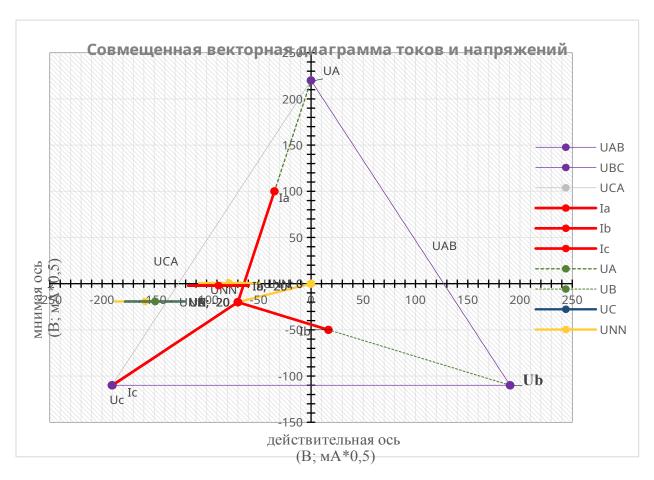


Рис. 8. Совмещенная векторная диаграмма токов и напряжений трехфазной цепи с несимметричной нагрузкой в схеме «звезда», с отключенным нулевым проводом.

2.10. Собираем схему для исследования трехфазной цепи с включением симметричной активной нагрузки в **схему «треугольник»**, представленную на рис.9.

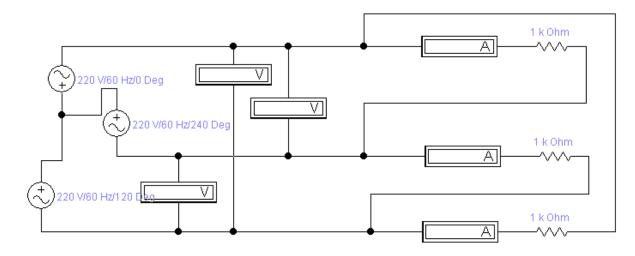


Рис. 9. Схема трехфазной цепи с включением нагрузки в схему «треугольник».

2.11. Устанавливаем значения сопротивлений резисторов R равным 1 кОм и напряжение источника питания U равным 220 B, со сдвигом угла фаз в 120°. Включаем установку и снимаем показания измерительных приборов (рис.10). Данные измерений заносим в таблицу 2.

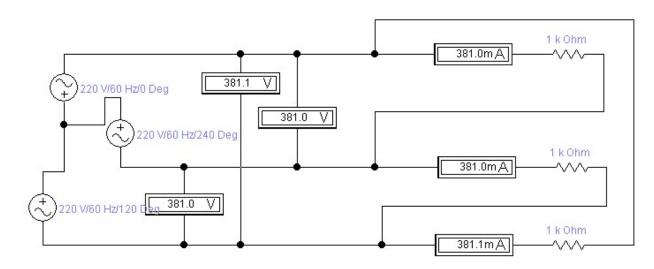


Рис.10.Схема трехфазной цепи с включением симметричной нагрузки в схему «треугольник».

2.12. Устанавливаем значения сопротивлений резисторов R равными 1 кОм, 1,5 кОм и 0,5 кОмВключаем установку и снимаем показания измерительных приборов (рис.11). Данные измерений заносим в таблицу 2.

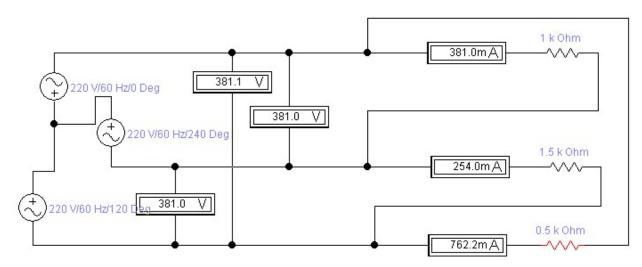


Рис.11.Схема трехфазной цепи с включением несимметричной нагрузки в схему «треугольник».

2.13. Производим расчет фазных мощностей нагрузки по формуле (3) и расчет эффективной мощности сети по формуле (4), вносим расчетные данные таблицу 1.

$$P_{\pi} = U_{\pi} * I_{\phi} \tag{3}$$

$$P_{\beta\phi} = P_{AB} + P_{BC} + P_{CA} \tag{4}$$

Таблица 2.

Нагрузка		Резу	ультать	Результаты вычислений						
	I _A , MA	Ів, мА	Іс, мА	U_{AB}, B	U _{BC} , B	$\mathrm{U}_{\mathrm{ca}},\mathbf{B}$	P_{AB}, BT	$ m P_{BC}, BT$	Рсл, Вт	${ m P}_{ m s}$, ${ m BT}$
Симметричная	381	381	381	381	381	381	145,1	145,1	145,1	435,3
Несимметричная	381	254	762	381	381	381	145,1	8,96	290,3	532,2

3. Выводы:

- 3.1. По результатам измерений и расчетов можно сделать вывод о зависимости фазных токов и напряжений, а также мощностей в трехфазной сети при соединении несимметричной нагрузки приемников в «звезду» от наличия соединения нейтрального провода.
- 3.2.В тоже время в трехфазной сети при соединении симметричной нагрузки приемников в «звезду» значения фазных токов и напряжений, а также мощностейне зависят от наличия соединения нейтрального провода.
- 3.3. По результатам измерений и расчетов трехфазной сети при соединении приемников в «треугольник» можно сделать вывод о зависимости

только линейных токов и мощностей от характера (симметричной или несимметричной) нагрузки